Semiclassical sum rules, such as the Gutzwiller trace formula, depend on the properties of periodic, closed, or homoclinic (heteroclinic) orbits. The interferences embedded in such orbit sums are governed by classical action functions and Maslov indices. For chaotic systems, the relative actions of such orbits can be expressed in terms of phase space areas bounded by segments of stable and unstable manifolds, and Moser invariant curves. This also generates direct relations between periodic orbits and homoclinic (heteroclinic) orbit actions. Simpler, explicit approximate expressions following from the exact relations are given with error estimates. They arise from asymptotic scaling of certain bounded phase space areas. The actions of infinite subsets of periodic orbits are determined by their periods and the locations of the limiting homoclinic points on which they accumulate.