We provide a general Bochner type formula which enables us to prove some rigidity results for $V$-static spaces. In particular, we show that an $n$-dimensional positive static triple with connected boundary and positive scalar curvature must be isometric to the standard hemisphere, provided that the metric has zero radial Weyl curvature and satisfies a suitable pinching condition. Moreover, we classify $V$-static spaces with non-negative sectional curvature.