Magneto-transport properties of the hydrogen atom nodal-line semimetal candidates CaTX (T=Ag, Cd, X=As, Ge)


الملخص بالإنكليزية

Topological semimetals are characterized by protected crossings between conduction and valence bands. These materials have recently attracted significant interest because of the deep connections to high-energy physics, the novel topological surface states, and the unusual transport phenomena. While Dirac and Weyl semimetals have been extensively studied, the nodal-line semimetal remains largely unexplored due to the lack of an ideal material platform. In this paper, we report the magneto-transport properties of two nodal-line semimetal candidates CaAgAs and CaCdGe. First, our single crystalline CaAgAs supports the first hydrogen atom nodal-line semimetal, where only the topological nodal-line is present at the Fermi level. Second, our CaCdGe sample provides an ideal platform to perform comparative studies because it features the same topological nodal line but has a more complicated Fermiology with irrelevant Fermi pockets. As a result, the magnetoresistance of our CaCdGe sample is more than 100 times larger than that of CaAgAs. Through our systematic magneto-transport and first-principles band structure calculations, we show that our CaTX compounds can be used to study, isolate, and control the novel topological nodal-line physics in real materials.

تحميل البحث