Electronic Structure of Manganese Phthalocyanine Modified via Potassium Intercalation: a Comprehensive Experimental Study


الملخص بالإنكليزية

Potassium (K) intercalated manganese phthalocyanine (MnPc) reveals vast changes of its electronic states close to the Fermi level. However, theoretical studies are controversial regarding the electronic configuration. Here, MnPc doped with K was studied by ultraviolet, X-ray, and inverse photoemission, as well as near edge X-ray absorption fine structure spectroscopy. Upon K intercalation the Fermi level shifts toward the lowest unoccupied molecular orbital filling it up with donated electrons with the appearance of an additional feature in the energy region of the occupied states. The electronic bands are pinned 0.5 eV above and 0.4 eV below the Fermi level. The branching ratio of the Mn L3 and L2 edges indicate an increase of the spin state. Moreover, the evolution of the Mn L and N K edges reveals strong hybridization between Mn 3d and N 2p states of MnPc and sheds light on the electron occupation in the ground and n-doped configurations.

تحميل البحث