Pure gauge QCD flux tubes and their widths at finite temperature


الملخص بالإنكليزية

We study the flux tubes produced by static quark-antiquark, quark-quark and quark-gluon charges at finite temperature in pure gauge SU(3) lattice QCD. Our sources are static and our lattice correlators are composed of fundamental and adjoint Polyakov loops. To signal the flux tubes, we compute the square densities of the chromomagnetic and chromoelectric fields with plaquettes, in a gauge invariant framework. We study the existence and non-existence of flux tubes both above and below the deconfinement phase transition temperature Tc. Using the Lagrangian density as a probability distribution, we also compute the widths of the flux tubes and study their widening as a function of the intercharge distance. We determine our results with both statistical and systematic errors. Our computations are performed in NVIDIA GPUs using the CUDA language.

تحميل البحث