The driving force for charge ordering in rare earth nickelates


الملخص بالإنكليزية

We show that charge ordering (more precisely, two-sublattice bond disproportionation) in the rare earth nickelate perovskites is intimately related to a negative charge transfer energy. By adding an additional potential on the Ni d states we are able to vary the charge tranfer energy and compute relaxed structures within an ab-initio framework. We show that the difference in Ni-O bond lengths and the value of the ordered state magnetic moment correlate with the charge transfer energy and that the transition to the bond-disproportionated state occurs when the effective charge transfer energy becomes negative.

تحميل البحث