Beyond Whittle: Nonparametric correction of a parametric likelihood with a focus on Bayesian time series analysis


الملخص بالإنكليزية

The Whittle likelihood is widely used for Bayesian nonparametric estimation of the spectral density of stationary time series. However, the loss of efficiency for non-Gaussian time series can be substantial. On the other hand, parametric methods are more powerful if the model is well-specified, but may fail entirely otherwise. Therefore, we suggest a nonparametric correction of a parametric likelihood taking advantage of the efficiency of parametric models while mitigating sensitivities through a nonparametric amendment. Using a Bernstein-Dirichlet prior for the nonparametric spectral correction, we show posterior consistency and illustrate the performance of our procedure in a simulation study and with LIGO gravitational wave data.

تحميل البحث