The linear superposition principle in quantum mechanics is essential for several no-go theorems such as the no-cloning theorem, the no-deleting theorem and the no-superposing theorem. It remains an open problem of finding general forbidden principles to unify these results. In this paper, we investigate general quantum transformations forbidden or permitted by the superposition principle for various goals. First, we prove a no-encoding theorem that forbids linearly superposing of an unknown pure state and a fixed state in Hilbert space of finite dimension. Two general forms include the no-cloning theorem, the no-deleting theorem, and the no-superposing theorem as special cases. Second, we provide a unified scheme for presenting perfect and imperfect quantum tasks (cloning and deleting) in a one-shot manner. This scheme may yield to fruitful results that are completely characterized with the linear independence of the input pure states. The generalized upper bounds for the success probability will be proved. Third, we generalize a recent superposing of unknown states with fixed overlaps when multiple copies of the input states are available.