Structural instability of large-scale functional networks


الملخص بالإنكليزية

We study how large functional networks can grow stably under possible cascading overload failures and evaluated the maximum stable network size above which even a small-scale failure would cause a fatal breakdown of the network. Employing a model of cascading failures induced by temporally fluctuating loads, the maximum stable size $n_{text{max}}$ has been calculated as a function of the load reduction parameter $r$ that characterizes how quickly the total load is reduced during the cascade. If we reduce the total load sufficiently fast ($rge r_{text{c}}$), the network can grow infinitely. Otherwise, $n_{text{max}}$ is finite and increases with $r$. For a fixed $r,(<r_{text{c}})$, $n_{text{max}}$ for a scale-free network is larger than that for an exponential network with the same average degree. We also discuss how one detects and avoids the crisis of a fatal breakdown of the network from the relation between the sizes of the initial network and the largest component after an ordinarily occurring cascading failure.

تحميل البحث