Exotic Electroweak Signals in Twin Higgs


الملخص بالإنكليزية

The Twin Higgs model is the preeminent example of a theory of neutral naturalness, where the new particles that alleviate the little hierarchy problem are Standard Model (SM) singlets. The most promising collider search strategy, based on rare Higgs decays, is nevertheless not effective in significant regions of the parameter space of the low energy theory. This underlines the importance of phenomenological studies on ultraviolet completions of the Twin Higgs model, which must lie at a scale lower than 5-10 TeV. We pursue this course in the context of non-supersymmetric completions, focusing on exotic fermions that carry SM electroweak and twin color charges, as well as on exotic vectors that transform as the bi-fundamental of the electroweak or color groups. Both $Z_2$-preserving and $Z_2$-breaking mass spectra are considered for the exotic fermions. In the former case they must be heavier than $sim 1$ TeV, but can still be sizably produced in the decays of the color bi-fundamental vector. In the $Z_2$-breaking scenario, the exotic fermions can have masses in the few hundred GeV range without significantly increasing the fine-tuning. Once pair-produced through the electroweak interactions, they naturally form bound states held together by the twin color force, which subsequently annihilate back to SM particles. The associated resonance signals are discussed in detail. We also outline the phenomenology of the electroweak bi-fundamental vectors, some of which mix with the SM $W$ and $Z$ and can therefore be singly produced in hadron collisions.

تحميل البحث