Cells with many facets in a Poisson hyperplane tessellation


الملخص بالإنكليزية

Let $Z$ be the typical cell of a stationary Poisson hyperplane tessellation in $mathbb{R}^d$. The distribution of the number of facets $f(Z)$ of the typical cell is investigated. It is shown, that under a well-spread condition on the directional distribution, the quantity $n^{frac{2}{d-1}}sqrt[n]{mathbb{P}(f(Z)=n)}$ is bounded from above and from below. When $f(Z)$ is large, the isoperimetric ratio of $Z$ is bounded away from zero with high probability. These results rely on one hand on the Complementary Theorem which provides a precise decomposition of the distribution of $Z$ and on the other hand on several geometric estimates related to the approximation of polytopes by polytopes with fewer facets. From the asymptotics of the distribution of $f(Z)$, tail estimates for the so-called $Phi$ content of $Z$ are derived as well as results on the conditional distribution of $Z$ when its $Phi$ content is large.

تحميل البحث