On the application of higher order symplectic integrators in Hamiltonian Monte Carlo


الملخص بالإنكليزية

We explore the construction of new symplectic numerical integration schemes to be used in Hamiltonian Monte Carlo and study their efficiency. Two integration schemes from Blanes et al. (2014), and a new scheme based on optimal acceptance probability, are considered as candidates to the commonly used leapfrog method. All integration schemes are tested within the framework of the No-U-Turn sampler (NUTS), both for a logistic regression model and a student $t$-model. The results show that the leapfrog method is inferior to all the new methods both in terms of asymptotic expected acceptance probability for a model problem and the and efficient sample size per computing time for the realistic models.

تحميل البحث