We explore the construction of new symplectic numerical integration schemes to be used in Hamiltonian Monte Carlo and study their efficiency. Two integration schemes from Blanes et al. (2014), and a new scheme based on optimal acceptance probability, are considered as candidates to the commonly used leapfrog method. All integration schemes are tested within the framework of the No-U-Turn sampler (NUTS), both for a logistic regression model and a student $t$-model. The results show that the leapfrog method is inferior to all the new methods both in terms of asymptotic expected acceptance probability for a model problem and the and efficient sample size per computing time for the realistic models.