Density Estimation Trees as fast non-parametric modelling tools


الملخص بالإنكليزية

Density Estimation Trees (DETs) are decision trees trained on a multivariate dataset to estimate its probability density function. While not competitive with kernel techniques in terms of accuracy, they are incredibly fast, embarrassingly parallel and relatively small when stored to disk. These properties make DETs appealing in the resource-expensive horizon of the LHC data analysis. Possible applications may include selection optimization, fast simulation and fast detector calibration. In this contribution I describe the algorithm, made available to the HEP community in a RooFit implementation. A set of applications under discussion within the LHCb Collaboration are also briefly illustrated.

تحميل البحث