iMet: A computational tool for structural annotation of unknown metabolites from tandem mass spectra


الملخص بالإنكليزية

Untargeted metabolomic studies are revealing large numbers of naturally occurring metabolites that cannot be characterized because their chemical structures and MS/MS spectra are not available in databases. Here we present iMet, a computational tool based on experimental tandem mass spectrometry that could potentially allow the annotation of metabolites not discovered previously. iMet uses MS/MS spectra to identify metabolites structurally similar to an unknown metabolite, and gives a net atomic addition or removal that converts the known metabolite into the unknown one. We validate the algorithm with 148 metabolites, and show that for 89% of them at least one of the top four matches identified by iMet enables the proper annotation of the unknown metabolite. iMet is freely available at http://imet.seeslab.net.

تحميل البحث