The purpose of this note is to revisit the results of arXiv:1407.4324 from a slightly different perspective, outlining how, if the integral closures of a finite set of prime ideals abide the expected convexity patterns, then the existence of a peculiar polynomial allows to compute the F-jumping numbers of all the ideals formed by taking sums of products of the original ones. The note concludes with the suggestion of a possible source of examples falling in such a framework.