Chiral Ordering Spin Associated Glass like State in SrRuO3SrIrO3 Superlattice


الملخص بالإنكليزية

Heterostructure interface provides a powerful platform to observe rich emergent phenomena, such as interfacial superconductivity, nontrivial topological surface state. Here SrRuO3/SrIrO3 superlattices were epitaxially synthesized. The magnetic and electrical properties of these superlattices were characterized. Broad cusps in the zero field cooling magnetization curves and near stable residual magnetization below the broad cusps, as well as two steps magnetization hysteresis loops are observed. The magnetization relaxes following a modified Stretched function model indicating coexistence of spin glass and ferromagnetic ordering in the superlattices. Topological Hall effect was demonstrated at low temperature and weakened with the increase of SrIrO3 layer thickness. These results suggest that chiral ordering spin texture were generated at the interfaces due to the interfacial Dzyaloshinskii-Moriya (DM) interaction, which generates the spin glass behaviors. The present work demonstrates that SrIrO3 can effectively induce interface DM interactions in heterostructures, it would pave light on the new research directions of strong spin orbit interaction oxides, from the viewpoints of both basic science and prospective spintronics devices applications.

تحميل البحث