Optical Evidence of Itinerant-Localized Crossover of $4f$ Electrons in Cerium Compounds


الملخص بالإنكليزية

Cerium (Ce)-based heavy-fermion materials have a characteristic double-peak structure (mid-IR peak) in the optical conductivity [$sigma(omega)$] spectra originating from the strong conduction ($c$)--$f$ electron hybridization. To clarify the behavior of the mid-IR peak at a low $c$-$f$ hybridization strength, we compared the $sigma(omega)$ spectra of the isostructural antiferromagnetic and heavy-fermion Ce compounds with the calculated unoccupied density of states and the spectra obtained from the impurity Anderson model. With decreasing $c$-$f$ hybridization intensity, the mid-IR peak shifts to the low-energy side owing to the renormalization of the unoccupied $4f$ state, but suddenly shifts to the high-energy side owing to the $f$-$f$ on-site Coulomb interaction at a slight localized side from the quantum critical point (QCP). This finding gives us information on the change in the electronic structure across QCP.

تحميل البحث