Up and down quark masses and corrections to Dashens theorem from lattice QCD and quenched QED


الملخص بالإنكليزية

In a previous letter (arXiv:1306.2287) we determined the isospin mass splittings of the baryon octet from a lattice calculation based on quenched QED and $N_f{=}2{+}1$ QCD simulations with 5 lattice spacings down to $0.054~mathrm{fm}$, lattice sizes up to $6~mathrm{fm}$ and average up-down quark masses all the way down to their physical value. Using the same data we determine here the corrections to Dashens theorem and the individual up and down quark masses. For the parameter which quantifies violations to Dashenss theorem, we obtain $epsilon=0.73(2)(5)(17)$, where the first error is statistical, the second is systematic, and the third is an estimate of the QED quenching error. For the light quark masses we obtain, $m_u=2.27(6)(5)(4)~mathrm{MeV}$ and $m_d=4.67(6)(5)(4)~mathrm{MeV}$ in the $bar{mathrm{MS}}$ scheme at $2~mathrm{GeV}$ and the isospin breaking ratios $m_u/m_d=0.485(11)(8)(14)$, $R=38.2(1.1)(0.8)(1.4)$ and $Q=23.4(0.4)(0.3)(0.4)$. Our results exclude the $m_u=0$ solution to the strong CP problem by more than $24$ standard deviations.

تحميل البحث