Half Heusler Alloys for Efficient Thermoelectric Power Conversion


الملخص بالإنكليزية

Half-Heusler (HH) phases (space group F43m, Clb) are increasingly gaining attention as promising thermoelectric materials in view of their thermal stability, scalability, and environmental benignity as well as efficient power output. Until recently, the verifiable dimensionless figure of merit (ZT) of HH phases has remained moderate near 1, which limits the power conversion efficiency of these materials. We report herein ZT~1.3 in n-type (Hf,Zr)NiSn alloys near 850 K developed through elemental substitution and simultaneously embedment of nanoparticles in the HH matrix, obtained by annealing the samples close to their melting temperatures. Introduction of mass fluctuation and scattering centers play a key role in the high ZT measured, as shown by the reduction of thermal conductivity and increase of thermopower. Based on computation, the power conversion efficiency of a n-p couple module based on the new n-type (Hf,Zr,Ti)NiSn particles-in-matrix composite and recently reported high-ZT p-type HH phases is expected to reach 13%, comparable to that of state-of-the-art materials, but with the mentioned additional materials and environmental attributes. Since the high efficiency is obtained without tuning the microstructure of the Half-Heusler phases, it leaves room for further optimization.

تحميل البحث