Atomic Conversion Reaction Mechanism of WO3 in Secondary Ion Batteries


الملخص بالإنكليزية

Conversion reaction is one of the most important chemical processes in energy storage such as lithium ion batteries. While it is generally assumed that the conversion reaction is initiated by ion intercalation into the electrode material, solid evidence of intercalation and the subsequent transition mechanism to conversion remain elusive. Here, using well-defined WO3 single crystalline thin films grown on Nb doped SrTiO3(001) as a model electrode, we elucidate the conversion reaction mechanisms during Li+, Na+ and Ca2+ insertion into WO3 by in situ transmission electron microscopy studies. Intercalation reactions are explicitly revealed for all ion insertions. With corroboration from first principle molecular simulations, it is found that, beyond intercalation, ion-oxygen bonding destabilize the W framework, which gradually collapses to pseudo-amorphous structure. In addition, we show the interfacial tensile strain imposed by the SrTiO3 substrate can preserve the structure of an ultra-thin layer of WO3, offering a possible engineering solution to improve the cyclability of electrode materials. This study provides a detailed atomistic picture on the conversion-type electrodes in secondary ion batteries.

تحميل البحث