Thin-film based phase plates for transmission electron microscopy fabricated from metallic glasses


الملخص بالإنكليزية

Thin-film based phase plates are meanwhile a widespread tool to enhance the contrast of weak-phase objects in transmission electron microscopy (TEM). The thin film usually consists of amorphous carbon, which suffers from quick degeneration under the intense electron-beam illumination. Recent investigations have focused on the search for alternative materials with an improved material stability. This work presents thin-film based phase plates fabricated from metallic glass alloys, which are characterized by a high electrical conductivity and an amorphous structure. Thin films of the zirconium-based alloy Zr65.0Al7.5Cu27.5 (ZAC) are prepared and their phase-shifting properties are tested. The ZAC-alloy film is investigated by different TEM techniques, which reveal a range of beneficial characteristics. Particularly favorable is the small probability for inelastic plasmon scattering, which is promising to improve the performance of thin-film based phase plates in phase-contrast TEM.

تحميل البحث