Pioneering study of Gamow-Teller (GT) and Fermi matrix elements (MEs) using no-core-configuration-interaction formalism rooted in multi-reference density functional theory is presented. After successful test performed for 6He -> 6Li beta-decay, the model is applied to compute MEs in the sd- and pf-shell T=1/2 mirror nuclei. The calculated GT MEs and the isospin-symmetry-breaking corrections to the Fermi branch are found to be in a very good agreement with shell-model predictions in spite of fundamental differences between these models concerning model space, treatment of correlations or inclusion of a core. This result indirectly supports the two-body current based scenarios behind the quenching of axial-vector coupling constant.