We experimentally study the effects of coupling one-dimensional Many-Body Localized (MBL) systems with identical disorder. Using a gas of ultracold fermions in an optical lattice, we artifically prepare an initial charge density wave in an array of 1D tubes with quasi-random onsite disorder and monitor the subsequent dynamics over several thousand tunneling times. We find a strikingly different behavior between MBL and Anderson Localization. While the non-interacting Anderson case remains localized, in the interacting case any coupling between the tubes leads to a delocalization of the entire system.