Let $M$ be an exact symplectic manifold with $c_1(M)=0$. Denote by $mathrm{Fuk}(M)$ the Fukaya category of $M$. We show that the dual space of the bar construction of $mathrm{Fuk}(M)$ has a differential graded noncommutative Poisson structure. As a corollary we get a Lie algebra structure on the cyclic cohomology $mathrm{HC}^bullet(mathrm{Fuk}(M))$, which is analogous to the ones discovered by Kontsevich in noncommutative symplectic geometry and by Chas and Sullivan in string topology.