Anomalous behavior of trapping in extended dendrimers with a perfect trap


الملخص بالإنكليزية

Compact and extended dendrimers are two important classes of dendritic polymers. The impact of the underlying structure of compact dendrimers on dynamical processes has been much studied, yet the relation between the dynamical and structural properties of extended dendrimers remains not well understood. In this paper, we study the trapping problem in extended dendrimers with generation-dependent segment lengths, which is different from that of compact dendrimers where the length of the linear segments is fixed. We first consider a particular case that the deep trap is located at the central node, and derive an exact formula for the average trapping time (ATT) defined as the average of the source-to-trap mean first passage time over all starting points. Then, using the obtained result we deduce a closed-form expression for the ATT to an arbitrary trap node, based on which we further obtain an explicit solution to the ATT corresponding to the trapping issue with the trap uniformly distributed in the polymer systems. We show that the trap location has a substantial influence on the trapping efficiency measured by the ATT, which increases with the shortest distance from the trap to the central node, a phenomenon similar to that for compact dendrimers. In contrast to this resemblance, the leading terms of ATTs for the three trapping problems differ drastically between extended and compact dendrimers, with the trapping processes in the extended dendrimers being less efficient than in compact dendrimers.

تحميل البحث