CMB quenching of high-redshift radio-loud AGNs


الملخص بالإنكليزية

The very existence of more than a dozen of high-redshift (z>4) blazars indicates that a much larger population of misaligned powerful jetted AGN was already in place when the Universe was <1.5 Gyr old. Such parent population proved to be very elusive, and escaped direct detection in radio surveys so far. High redshift blazars themselves seem to be failing in producing extended radio-lobes, raising questions about the connection between such class and the vaster population of radio-galaxies. We show that the interaction of the jet electrons with the intense cosmic microwave background (CMB) radiation explains the lack of extended radio emission in high redshift blazars and in their parent population, helping to explain the apparently missing misaligned counterparts of high redshift blazars. On the other hand, the emission from the more compact and more magnetised hot spots are less affected by the enhanced CMB energy density. By modelling the spectral energy distribution of blazar lobes and hot spots we find that most of them should be detectable by low frequency deep radio observations, e.g., by LOw-Frequency ARray for radio astronomy (LOFAR) and by relatively deep X-ray observations with good angular resolution, e.g., by the Chandra satellite. At high redshifts, the emission of a misaligned relativistic jet, being de-beamed, is missed by current large sky area surveys. The isotropic flux produced in the hot spots can be below ~1 mJy and the isotropic lobe radio emission is quenched by the CMB cooling. Consequently, even sources with very powerful jets can go undetected in current radio surveys, and misclassified as radio-quiet AGNs.

تحميل البحث