Sublinear Estimation of Weighted Matchings in Dynamic Data Streams


الملخص بالإنكليزية

This paper presents an algorithm for estimating the weight of a maximum weighted matching by augmenting any estimation routine for the size of an unweighted matching. The algorithm is implementable in any streaming model including dynamic graph streams. We also give the first constant estimation for the maximum matching size in a dynamic graph stream for planar graphs (or any graph with bounded arboricity) using $tilde{O}(n^{4/5})$ space which also extends to weighted matching. Using previous results by Kapralov, Khanna, and Sudan (2014) we obtain a $mathrm{polylog}(n)$ approximation for general graphs using $mathrm{polylog}(n)$ space in random order streams, respectively. In addition, we give a space lower bound of $Omega(n^{1-varepsilon})$ for any randomized algorithm estimating the size of a maximum matching up to a $1+O(varepsilon)$ factor for adversarial streams.

تحميل البحث