Head-related impulse responses (HRIRs) are subject-dependent and direction-dependent filters used in spatial audio synthesis. They describe the scattering response of the head, torso, and pinnae of the subject. We propose a structural factorization of the HRIRs into a product of non-negative and Toeplitz matrices; the factorization is based on a novel extension of a non-negative matrix factorization algorithm. As a result, the HRIR becomes expressible as a convolution between a direction-independent emph{resonance} filter and a direction-dependent emph{reflection} filter. Further, the reflection filter can be made emph{sparse} with minimal HRIR distortion. The described factorization is shown to be applicable to the arbitrary source signal case and allows one to employ time-domain convolution at a computational cost lower than using convolution in the frequency domain.