Sum of Squares Lower Bounds from Pairwise Independence


الملخص بالإنكليزية

We prove that for every $epsilon>0$ and predicate $P:{0,1}^krightarrow {0,1}$ that supports a pairwise independent distribution, there exists an instance $mathcal{I}$ of the $mathsf{Max}P$ constraint satisfaction problem on $n$ variables such that no assignment can satisfy more than a $tfrac{|P^{-1}(1)|}{2^k}+epsilon$ fraction of $mathcal{I}$s constraints but the degree $Omega(n)$ Sum of Squares semidefinite programming hierarchy cannot certify that $mathcal{I}$ is unsatisfiable. Similar results were previously only known for weaker hierarchies.

تحميل البحث