In this white paper we describe the prospects for ASTRO-H for the study of outflows from active galactic nuclei. The most important breakthroughs in this field are expected to arise from the high spectral resolution and sensitivity in the Fe-K band, combined with broad-band sensitivity over the full X-ray band and spectral capabilities also at lower energies. The sensitivity in the Fe-K region allows to extend the absorption measure distribution of the outflow out to the highest ionisation states accessible, where observations with current X-ray missions indicate that most of the outflowing gas is to be found. Due to the high-resolution and sensitivity it will also be able to give the definitive proof for the existence of ultra-fast outflows, and if so, characterise their physical properties in great detail. These ultra-fast outflows carry very large amounts of energy and momentum, and are of fundamental importance for feedback studies. We show how the ASTRO-H observations in general can help to constrain numerical models for outflows. The link to reflection and emission processes is also discussed, as well as the possible relation between outflows and relativistic emission lines. Finally, we discuss the prospects for other related categories of objects like BAL quasars, partially covered sources and Compton thick outflows.