Standing on successful first principles predictions for new functional ferroelectric materials, a number of new ferroelectrics have been experimentally discovered. Utilizing trilinear coupling of two types of octahedron rotations, hybrid improper ferroelectricity has been theoretically predicted in ordered perovskites and the Ruddlesden-Popper compounds (Ca$_{3}$Ti$_{2}$O$_{7}$, Ca$_{3}$Mn$_{2}$O$_{7}$, and (Ca/Sr/Ba)$_{3}$(Sn/Zr/Ge)$_{2}$O$_{7}$). However, the ferroelectricity of these compounds has never been experimentally confirmed and even their polar nature has been under debate. Here we provide the first experimental demonstration of room-temperature switchable polarization in the bulk crystals of Ca$_{3}$Ti$_{2}$O$_{7}$ as well as Sr-doped Ca$_{3}$Ti$_{2}$O$_{7}$. In addition, (Ca,Sr)$_{3}$Ti$_{2}$O$_{7}$ is found to exhibit an intriguing ferroelectric domain structure resulting from orthorhombic twins and (switchable) planar polarization. The planar domain structure accompanies abundant charged domain walls with conducting head-to-head and insulating tail-to-tail configurations, which exhibit two-order-of-magnitude conduction difference. These discoveries provide new research opportunities not only on new stable ferroelectrics of Ruddlesden-Popper compounds, but also on meandering conducting domain walls formed by planar polarization.