Quantum magnetism and topological ordering via enhanced Rydberg-dressing near Fu007forster-resonances


الملخص بالإنكليزية

We devise a cold-atom approach to realizing a broad range of bi-linear quantum magnets. Our scheme is based on off-resonant single-photon excitation of Rydberg $P$-states (Rydberg-dressing), whose strong interactions are shown to yield controllable XYZ-interactions between effective spins, represented by different atomic ground states. The distinctive features of Forster-resonant Rydberg atom interactions are exploited to enhance the effectiveness of Rydberg-dressing and, thereby, yield large spin-interactions that greatly exceed corresponding decoherence rates. We illustrate the concept on a spin-1 chain implemented with cold Rubidium atoms, and demonstrate that this permits the dynamical preparation of topological magnetic phases. Generally, the described approach provides a viable route to exploring quantum magnetism with dynamically tuneable (an)isotropic interactions as well as variable space- and spin-dimensions in cold-atom experiments.

تحميل البحث