We address the problem of heat transport in a chain of coupled quantum harmonic oscillators, exposed to the influences of local environments of various nature, stressing the effects that the specific nature of the environment has on the phenomenology of the transport process. We study in detail the behavior of thermodynamically relevant quantities such as heat currents and mean energies of the oscillators, establishing rigorous analytical conditions for the existence of a steady state, whose features we analyse carefully. In particular we assess the conditions that should be faced to recover trends reminiscent of the classical Fourier law of heat conduction and highlight how such a possibility depends on the environment linked to our system.