Reconstruction of Multimodal Distributions for Hybrid Moment-based Chemical Kinetics, Supporting Information


الملخص بالإنكليزية

The stochastic dynamics of biochemical reaction networks can be accurately described by discrete-state Markov processes where each chemical reaction corresponds to a state transition of the process. Due to the largeness problem of the state space, analysis techniques based on an exploration of the state space are often not feasible and the integration of the moments of the underlying probability distribution has become a very popular alternative. In this paper the focus is on a comparison of reconstructed distributions from their moments obtained by two different moment-based analysis methods, the method of moments (MM) and the method of conditional moments (MCM). We use the maximum entropy principle to derive a distribution that fits best to a given sequence of (conditional) moments. For the two gene regulatory networks that we consider we find that the MCM approach is more suitable to describe multimodal distributions and that the reconstruction is more accurate if conditional distributions are considered.

تحميل البحث