We present a modified scheme for detection of the magneto-optical rotation (MOR) effect, where a linearly polarized laser field is interacting with cold $^{87}$Rb atoms in an integrating sphere. The rotation angle of the probe beams polarization plane is detected in the experiment. The results indicate that the biased magnetic field, the probe light intensity and detuning, and the cold atoms temperature are key parameters for the MOR effect. This scheme may improve the contrast of the rotation signal and provide an useful approach for high contrast cold atom clocks and magnetometers.