The global ideal kink equation, for cylindrical geometry and zero beta, is simplified in the high poloidal mode number limit and used to determine the tearing stability parameter, $Delta^prime$. In the presence of a steep monotonic current gradient, $Delta^prime$ becomes a function of a parameter, $sigma_0$, characterising the ratio of the maximum current gradient to magnetic shear, and $x_s$, characterising the separation of the resonant surface from the maximum of the current gradient. In equilibria containing a current spike, so that there is a non-monotonic current profile, $Delta^prime$ also depends on two parameters: $kappa$, related to the ratio of the curvature of the current density at its maximum to the magnetic shear, and $x_s$, which now represents the separation of the resonance from the point of maximum current density. The relation of our results to earlier studies of tearing modes and to recent gyro-kinetic calculations of current driven instabilities, is discussed, together with potential implications for the stability of the tokamak pedestal.