Density of states at disorder-induced phase transitions in a multichannel Majorana wire


الملخص بالإنكليزية

An $N$-channel spinless p-wave superconducting wire is known to go through a series of $N$ topological phase transitions upon increasing the disorder strength. Here, we show that at each of those transitions the density of states shows a Dyson singularity $ u(varepsilon) propto varepsilon^{-1}|lnvarepsilon|^{-3} $, whereas $ u(varepsilon) propto varepsilon^{|alpha|-1}$ has a power-law singularity for small energies $varepsilon$ away from the critical points. Using the concept of superuniversality [Gruzberg, Read, and Vishveshwara, Phys. Rev. B 71, 245124 (2005)], we are able to relate the exponent $alpha$ to the wires transport properties at zero energy and, hence, to the mean free path $l$ and the superconducting coherence length $xi$.

تحميل البحث