We find new bounds on the conformal dimension of small cancellation groups. These are used to show that a random few relator group has conformal dimension 2+o(1) asymptotically almost surely (a.a.s.). In fact, if the number of relators grows like l^K in the length l of the relators, then a.a.s. such a random group has conformal dimension 2+K+o(1). In Gromovs density model, a random group at density d<1/8 a.a.s. has conformal dimension $asymp dl / |log d|$. The upper bound for C(1/8) groups has two main ingredients: $ell_p$-cohomology (following Bourdon-Kleiner), and walls in the Cayley complex (building on Wise and Ollivier-Wise). To find lower bounds we refine the methods of [Mackay, 2012] to create larger `round trees in the Cayley complex of such groups. As a corollary, in the density model at d<1/8, the density d is determined, up to a power, by the conformal dimension of the boundary and the Euler characteristic of the group.