Metal distribution in sloshing galaxy clusters: the case of A496


الملخص بالإنكليزية

We report results from a detailed study of the sloshing gas in the core of A496. We detect the low temperature/entropy spiral feature found in several cores, we also find that conduction between the gas in the spiral and the ambient medium must be suppressed by more than one order of magnitude with respect to Spitzer conductivity. Intriguingly, while the gas in the spiral features a higher metal abundance than the surrounding medium, it follows the entropy vs metal abundance relation defined by gas lying outside the spiral. The most plausible explanation for this behavior is that the low entropy metal rich plasma uplifted through the cluster atmosphere by sloshing, suffers little heating or mixing with the ambient medium. While sloshing appears to be capable of uplifting significant amounts of gas, the limited heat exchange and mixing between gas in and outside the spiral implies that this mechanism is not at all effective in: 1) permanently redistributing metals within the core region and 2) heating up the coolest and densest gas, thereby providing little or no contribution to staving of catastrophic cooling in cool cores.

تحميل البحث