We experimentally observe the spatial intensity statistics of light transmitted through three-dimensional isotropic scattering media. The intensity distributions measured through layers consisting of zinc oxide nanoparticles differ significantly from the usual Rayleigh statistics associated with speckle, and instead are in agreement with the predictions of mesoscopic transport theory, taking into account the known material parameters of the samples. Consistent with the measured spatial intensity fluctuations, the total transmission fluctuates. The magnitude of the fluctuations in the total transmission is smaller than expected on the basis of quasi-one-dimensional (1D) transport theory, which indicates that quasi-1D theories cannot fully describe these open three-dimensional media.