A Study of the Early-stage Evolution of Relativistic Electron-Ion Shock using 3D PIC Simulations


الملخص بالإنكليزية

We report the results of a 3D particle-in-cell (PIC) simulation carried out to study the early-stage evolution of the shock formed when an unmagnetized relativistic jet interacts with an ambient electron-ion plasma. Full-shock structures associated with the interaction are observed in the ambient frame. When open boundaries are employed in the direction of the jet; the forward shock is seen as a hybrid structure consisting of an electrostatic shock combined with a double layer, while the reverse shock is seen as a double layer. The ambient ions show two distinct features across the forward shock: a population penetrating into the shocked region from the precursor region and an accelerated population escaping from the shocked region into the precursor region. This behavior is a signature of a combination of an electrostatic shock and a double layer. Jet electrons are seen to be electrostatically trapped between the forward and reverse shock structures showing a ring-like distribution in a phase-space plot, while ambient electrons are thermalized and become essentially isotropic in the shocked region. The magnetic energy density grows to a few percent of the jet kinetic energy density at both the forward and the reverse shock transition layers in a rather short time scale. We see little disturbance of the jet ions over this time scale.

تحميل البحث