Full residual finiteness growth of a finitely generated group $G$ measures how efficiently word metric $n$-balls of $G$ inject into finite quotients of $G$. We initiate a study of this growth over the class of nilpotent groups. When the last term of the lower central series of $G$ has finite index in the center of $G$ we show that the growth is precisely $n^b$, where $b$ is the product of the nilpotency class and dimension of $G$. In the general case, we give a method for finding an upper bound of the form $n^b$ where $b$ is a natural number determined by what we call a terraced filtration of $G$. Finally, we characterize nilpotent groups for which the word growth and full residual finiteness growth coincide.