A Note on Near-factor-critical Graphs


الملخص بالإنكليزية

A near-factor of a finite simple graph $G$ is a matching that saturates all vertices except one. A graph $G$ is said to be near-factor-critical if the deletion of any vertex from $G$ results in a subgraph that has a near-factor. We prove that a connected graph $G$ is near-factor-critical if and only if it has a perfect matching. We also characterize disconnected near-factor-critical graphs.

تحميل البحث