First Principle Computation of Random Pinning Glass Transition, Glass Cooperative Length-Scales and Numerical Comparisons


الملخص بالإنكليزية

As a guideline for experimental tests of the ideal glass transition (Random Pinning Glass Transition, RPGT) that shall be induced in a system by randomly pinning particles, we performed first-principle computations within the Hypernetted chain approximation and numerical simulations of a Hard Sphere model of glass-former. We obtain confirmation of the expected enhancement of glassy behaviour under the procedure of random pinning, which consists in freezing a fraction $c$ of randomly chosen particles in the positions they have in an equilibrium configuration. We present the analytical phase diagram as a function of $c$ and of the packing fraction $phi$, showing a line of RPGT ending in a critical point. We also obtain first microscopic results on cooperative length-scales characterizing medium-range amorphous order in Hard Spere glasses and indirect quantitative information on a key thermodynamic quantity defined in proximity of ideal glass transitions, the amorphous surface tension. Finally, we present numerical results of pair correlation functions able to differentiate the liquid and the glass phases, as predicted by the analytic computations.

تحميل البحث