We analyse 14 LBGs at z~2.8-3.8 constituting the only sample where both a spectroscopic measurement of their metallicity and deep IR observations (CANDELS+HUGS survey) are available. Fixing the metallicity of population synthesis models to the observed values, we determine best-fit physical parameters under different assumptions about the star-formation history and also consider the effect of nebular emission. For comparison we determine the UV slope of the objects, and use it to estimate their SFR_UV99 by correcting the UV luminosity following Meurer et al. (1999). A comparison between SFR obtained through SED-fitting (SFR_fit) and the SFR_UV99 shows that the latter are underestimated by a factor 2-10, regardless of the assumed SFH. Other SFR indicators (radio, far-IR, X-ray, recombination lines) coherently indicate SFRs a factor of 2-4 larger than SFR_UV99 and in closer agreement with SFR_fit. This discrepancy is due to the solar metallicity implied by the usual beta-A1600 conversion factor. We propose a refined relation, appropriate for sub-solar metallicity LBGs: A1600 = 5.32+1.99beta. This relation reconciles the dust-corrected UV with the SED-fitting and the other SFR indicators. We show that the fact that z~3 galaxies have sub-solar metallicity implies an upward revision by a factor of ~1.5-2 of the global SFRD, depending on the assumptions about the age of the stellar populations. We find very young best-fit ages (10-500 Myrs) for all our objects. From a careful examination of the uncertainties in the fit and the amplitude of the Balmer break we conclude that there is little evidence of the presence of old stellar population in at least half of the LBGs in our sample, suggesting that these objects are probably caught during a huge star-formation burst, rather than being the result of a smooth evolution.