Enhancement of Superconducting Transition Temperature Due to Antiferromagnetic Spin Fluctuations in Iron-pnictides LaFe(As_{1-x}P_x)(O_{1-y}F_y) : 31P-NMR Studies


الملخص بالإنكليزية

Systematic P-NMR studies on LaFe(As_{1-x}P_x)(O_{1-y}F_y) with y=0.05 and 0.1 have revealed that the antiferromagnetic spin fluctuations (AFMSFs) at low energies are markedly enhanced around x=0.6 and 0.4, respectively, and as a result, Tc exhibits respective peaks at 24 K and 27 K against the P-substitution for As. This result demonstrates that the AFMSFs are responsible for the increase in Tc for LaFe(As_{1-x}P_x)(O_{1-y}F_y) as a primary mediator of the Cooper pairing. From a systematic comparison of AFMSFs with a series of (La_{1-z}Y_z)FeAsO_{delta} compounds in which Tc reaches 50 K for z=0.95, we remark that a moderate development of AFMSFs causes the Tc to increase up to 50 K under the condition that the local lattice parameters of FeAs tetrahedron approaches those of the regular tetrahedron. We propose that the T_c of Fe-pnictides exceeding 50 K is maximized under an intimate collaboration of the AFMSFs and other factors originating from the optimization of the local structure.

تحميل البحث