Taken together and viewed holistically, recent theory, low temperature (T) transport, photoelectron spectroscopy and quantum oscillation experiments have built a very strong case that the paradigmatic mixed valence insulator SmB6 is currently unique as a three-dimensional strongly correlated topological insulator (TI). As such, its many-body T-dependent bulk gap brings an extra richness to the physics beyond that of the weakly correlated TI materials. How will the robust, symmetry-protected TI surface states evolve as the gap closes with increasing T? For SmB6 exploiting this opportunity first requires resolution of other important gap-related issues, its origin, its magnitude, its T-dependence and its role in bulk transport. In this paper we report detailed T-dependent angle resolved photoemission spectroscopy (ARPES) measurements that answer all these questions in a unified way.