Electronic Structure of $textrm{Fe}textrm{Se}_{1-x}textrm{Te}_x$ Studied by X-ray Spectroscopy and Density Functional Theory


الملخص بالإنكليزية

We study the electronic properties of the $textrm{Fe}textrm{Se}_{1-x}textrm{Te}_x$ system ($x=0$, 0.25, 0.5, 0.75, and 1) from the perspective of X-ray spectroscopy and density functional theory (DFT). The analysis performed on the density of states reveals marked differences in the distribution of the $5p$ states of Te for $x>0$. We think that this finding can be associated with the fact that superconductivity is suppressed in FeTe. Moreover, using resonant inelastic X-ray scattering, we estimate the spin state of our system which can be correlated to the magnetic order. We find that the spin state of the $textrm{Fe}textrm{Se}_{1-x}textrm{Te}_x$ system fluctuates, as a function of $x$, between $S=0$ and $S=2$ with Fe in FeSe in the highest spin state. Finally, our DFT calculations nicely reproduce the X-ray emission spectra performed at the Fe $L$-edge (which probe the occupied states) and suggest that the $textrm{Fe}textrm{Se}_{1-x}textrm{Te}_x$ system can be considered at most as a moderately correlated system.

تحميل البحث