Electrically driven spin resonance in silicon carbide color centers


الملخص بالإنكليزية

We demonstrate that the spin of optically addressable point defects can be coherently driven with AC electric fields. Based on magnetic-dipole forbidden spin transitions, this scheme enables spatially confined spin control, the imaging of high-frequency electric fields, and the characterization of defect spin multiplicity. While we control defects in SiC, these methods apply to spin systems in many semiconductors, including the nitrogen-vacancy center in diamond. Electrically driven spin resonance offers a viable route towards scalable quantum control of electron spins in a dense array.

تحميل البحث