Stratified Sampling for the Ising Model: A Graph-Theoretic Approach


الملخص بالإنكليزية

We present a new approach to a classical problem in statistical physics: estimating the partition function and other thermodynamic quantities of the ferromagnetic Ising model. Markov chain Monte Carlo methods for this problem have been well-studied, although an algorithm that is truly practical remains elusive. Our approach takes advantage of the fact that, for a fixed bond strength, studying the ferromagnetic Ising model is a question of counting particular subgraphs of a given graph. We combine graph theory and heuristic sampling to determine coefficients that are independent of temperature and that, once obtained, can be used to determine the partition function and to compute physical quantities such as mean energy, mean magnetic moment, specific heat, and magnetic susceptibility.

تحميل البحث